import cv2 import os cam = cv2.VideoCapture(0) cam.set(3, 640) # set video width cam.set(4, 480) # set video height face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # For each person, enter one numeric face id face_id = input('\n----Enter User-id and press ----') print("\n [INFO] Initializing face capture. Look the camera and wait!") # Initialize individual sampling face count count = 0 while(True): ret, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_detector.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2) count += 1 # increment # Save the captured image into the datasets folder cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w]) #req os cv2.imshow('image', img) k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video if k == 27: break elif count >= 100: # Take 30 face sample and stop video capture break # Do a bit of cleanup print("\n [INFO] Exiting Program and cleaning up stuff") cam.release() cv2.destroyAllWindows()