import numpy as np import cv2 faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) cap.set(3,640) # set Width cap.set(4,480) # set Height while True: ret, img = cap.read() #img = cv2.flip(img, -1) #frame = cv2.flip(frame, -1) # Flip camera vertically ##Convert RBG Image to Grayimage gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ## call classifier function and pass in the scaling facotor,no.of neighbouts and minimum size of detected face faces = faceCascade.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=5, minSize=(20, 20) ) for (x,y,w,h) in faces: ##pass image/Top,left:x,y/Bottom,right corner:x+w,y+h//BGR//thickness cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] cv2.imshow('video',img) k = cv2.waitKey(30) & 0xff if k == 27: # press 'ESC' to quit break cap.release() cv2.destroyAllWindows()