diff options
author | Saumit Dinesan <justsaumit@protonmail.com> | 2023-05-09 17:47:20 +0530 |
---|---|---|
committer | Saumit Dinesan <justsaumit@protonmail.com> | 2023-05-09 17:47:20 +0530 |
commit | 2dd5321e39396383e7d604594a6940dba70d2bfc (patch) | |
tree | 29bba1aab51e673f1f6da4d9c221ed1696a000fd | |
parent | d6c282a733ce0a3453361973c683d251e1493b2d (diff) |
face_training: Refactored face training code for improved readability and efficiency
-rw-r--r-- | face-detection/02_face_training.py | 66 |
1 files changed, 40 insertions, 26 deletions
diff --git a/face-detection/02_face_training.py b/face-detection/02_face_training.py index a0d5a43..a3b96f5 100644 --- a/face-detection/02_face_training.py +++ b/face-detection/02_face_training.py @@ -1,35 +1,49 @@ import cv2 -import numpy as np -from PIL import Image import os +import numpy as np -path = 'dataset' # Using LBPH(Local Binary Patterns Histograms) recognizer -recognizer = cv2.face.LBPHFaceRecognizer_create() -detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml"); #create an instance +recognizer=cv2.face.LBPHFaceRecognizer_create() +face_detector=cv2.CascadeClassifier('haarcascade_frontalface_default.xml') +path='dataset' + # function to read the images in the dataset, convert them to grayscale values, return samples def getImagesAndLabels(path): - imagePaths = [os.path.join(path,f) for f in os.listdir(path)] faceSamples=[] ids = [] - for imagePath in imagePaths: - PIL_img = Image.open(imagePath).convert('L') # grayscale - img_numpy = np.array(PIL_img,'uint8') - id = int(os.path.split(imagePath)[-1].split(".")[1]) - faces = detector.detectMultiScale(img_numpy) - for (x,y,w,h) in faces: - faceSamples.append(img_numpy[y:y+h,x:x+w]) - ids.append(id) - return faceSamples,ids -print ("\n [INFO] Training faces. It will take a few seconds. Wait ...") -#returns two arrays faces and ids -faces,ids = getImagesAndLabels(path) + + for file_name in os.listdir(path): + if file_name.endswith(".jpg"): + id = int(file_name.split(".")[1]) + img_path = os.path.join(path, file_name) + img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) + + faces = face_detector.detectMultiScale(img) + + for (x, y, w, h) in faces: + faceSamples.append(img[y:y+h, x:x+w]) + ids.append(id) + + return faceSamples, ids + + +def trainRecognizer(faces, ids): + recognizer.train(faces, np.array(ids)) + # Create the 'trainer' folder if it doesn't exist + if not os.path.exists("trainer"): + os.makedirs("trainer") + # Save the model into 'trainer/trainer.yml' + recognizer.write('trainer/trainer.yml') + + +print("\n [INFO] Training faces. It will take a few seconds. Wait ...") +# Get face samples and their corresponding labels +faces, ids = getImagesAndLabels(path) + #Train the LBPH recognizer using the face samples and their corresponding labels -recognizer.train(faces, np.array(ids)) -# if trainer folder doesnt exist create: -if not os.path.exists("trainer"): - os.makedirs("trainer") -#save the model into trainer/trainer.yml -recognizer.write('trainer/trainer.yml') -# Print the numer of faces trained and then exit the program -print("\n [INFO] {0} faces trained. Exiting Program".format(len(np.unique(ids)))) +trainRecognizer(faces, ids) + + +# Print the number of unique faces trained +num_faces_trained = len(set(ids)) +print("\n [INFO] {} faces trained. Exiting Program".format(num_faces_trained)) |