summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSaumit Dinesan <justsaumit@protonmail.com>2023-05-12 09:19:51 +0530
committerSaumit Dinesan <justsaumit@protonmail.com>2023-05-12 09:19:51 +0530
commit87645de6e32856848eaac6620c2c3f1fcb024e50 (patch)
treebf47ad6b89ed150b8500ddfe1288293bb796319d
parent679e3983779e14b5be671b9e7c30ddbd108fefcc (diff)
facedetection: reversing changes
-rw-r--r--face-detection/03_face_recogition.py88
1 files changed, 40 insertions, 48 deletions
diff --git a/face-detection/03_face_recogition.py b/face-detection/03_face_recogition.py
index 51741a5..185d3c2 100644
--- a/face-detection/03_face_recogition.py
+++ b/face-detection/03_face_recogition.py
@@ -2,9 +2,6 @@ import cv2
import os
import numpy as np
from picamera2 import Picamera2
-from flask import Flask, render_template, Response
-
-app = Flask(__name__)
#Parameters
id = 0
@@ -31,58 +28,53 @@ cam.preview_configuration.align()
cam.configure("preview")
cam.start()
-def generate_frames():
- while True:
- # Capture a frame from the camera
- frame=cam.capture_array()
+while True:
+ # Capture a frame from the camera
+ frame=cam.capture_array()
- #Convert fram from BGR to grayscale
- frameGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
- #Create a DS faces- array with 4 elements- x,y coordinates top-left corner), width and height
- faces = face_detector.detectMultiScale(
- frameGray, # The grayscale frame to detect
- scaleFactor=1.1,# how much the image size is reduced at each image scale-10% reduction
- minNeighbors=5, # how many neighbors each candidate rectangle should have to retain it
- minSize=(150, 150)# Minimum possible object size. Objects smaller than this size are ignored.
- )
- for(x,y,w,h) in faces:
- namepos=(x+5,y-5) #shift right and up/outside the bounding box from top
- confpos=(x+5,y+h-5) #shift right and up/intside the bounding box from bottom
- #create a bounding box across the detected face
- cv2.rectangle(frame, (x,y), (x+w,y+h), boxColor, 3) #5 parameters - frame, topleftcoords,bottomrightcooords,boxcolor,thickness
+ #Convert fram from BGR to grayscale
+ frameGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
+ #Create a DS faces- array with 4 elements- x,y coordinates top-left corner), width and height
+ faces = face_detector.detectMultiScale(
+ frameGray, # The grayscale frame to detect
+ scaleFactor=1.1,# how much the image size is reduced at each image scale-10% reduction
+ minNeighbors=5, # how many neighbors each candidate rectangle should have to retain it
+ minSize=(150, 150)# Minimum possible object size. Objects smaller than this size are ignored.
+ )
+ for(x,y,w,h) in faces:
+ namepos=(x+5,y-5) #shift right and up/outside the bounding box from top
+ confpos=(x+5,y+h-5) #shift right and up/intside the bounding box from bottom
+ #create a bounding box across the detected face
+ cv2.rectangle(frame, (x,y), (x+w,y+h), boxColor, 3) #5 parameters - frame, topleftcoords,bottomrightcooords,boxcolor,thickness
- #recognizer.predict() method takes the ROI as input and
- #returns the predicted label (id) and confidence score for the given face region.
- id, confidence = recognizer.predict(frameGray[y:y+h,x:x+w])
+ #recognizer.predict() method takes the ROI as input and
+ #returns the predicted label (id) and confidence score for the given face region.
+ id, confidence = recognizer.predict(frameGray[y:y+h,x:x+w])
- # If confidence is less than 100, it is considered a perfect match
- if confidence < 100:
- id = names[id]
- confidence = f"{100 - confidence:.0f}%"
- else:
- id = "unknown"
- confidence = f"{100 - confidence:.0f}%"
+ # If confidence is less than 100, it is considered a perfect match
+ if confidence < 100:
+ id = names[id]
+ confidence = f"{100 - confidence:.0f}%"
+ else:
+ id = "unknown"
+ confidence = f"{100 - confidence:.0f}%"
#Display name and confidence of person who's face is recognized
cv2.putText(frame, str(id), namepos, font, height, nameColor, 2)
cv2.putText(frame, str(confidence), confpos, font, height, confColor, 1)
- # Display output Flask web application:
- # Convert the frame to JPEG format
- ret, buffer = cv2.imencode('.jpg', frame)
- frame = buffer.tobytes()
-
- # Yield the frame in the HTTP response
- yield (b'--frame\r\n'
- b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
-
-@app.route('/')
-def index():
- return render_template('index.html')
+ # Display realtime capture output to the user
+ cv2.imshow('Raspi Face Recognizer',frame)
-@app.route('/video_feed')
-def video_feed():
- return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
+ # Wait for 30 milliseconds for a key event (extract sigfigs) and exit if 'ESC' or 'q' is pressed
+ key = cv2.waitKey(100) & 0xff
+ #Checking keycode
+ if key == 27: # ESCAPE key
+ break
+ elif key == 113: # q key
+ break
-if __name__ == '__main__':
- app.run(debug=True)
+# Release the camera and close all windows
+print("\n [INFO] Exiting Program and cleaning up stuff")
+cam.stop()
+cv2.destroyAllWindows()