summaryrefslogtreecommitdiff
path: root/face-detection/01_face_capture_dataset.py
diff options
context:
space:
mode:
authorSaumit Dinesan <justsaumit@protonmail.com>2023-03-18 02:04:59 +0530
committerSaumit Dinesan <justsaumit@protonmail.com>2023-03-18 02:04:59 +0530
commit0cacd048bf88549de4385d5bec3ed6edcf67859c (patch)
tree9c105b15a1504e43f8f68f529a0ecedcf07324e5 /face-detection/01_face_capture_dataset.py
parentb359223312c8389e672ce1a37fa8ef3d5e70504e (diff)
01_face_capture_dataset.py
Diffstat (limited to 'face-detection/01_face_capture_dataset.py')
-rw-r--r--face-detection/01_face_capture_dataset.py30
1 files changed, 30 insertions, 0 deletions
diff --git a/face-detection/01_face_capture_dataset.py b/face-detection/01_face_capture_dataset.py
new file mode 100644
index 0000000..327264c
--- /dev/null
+++ b/face-detection/01_face_capture_dataset.py
@@ -0,0 +1,30 @@
+import cv2
+import os
+cam = cv2.VideoCapture(0)
+cam.set(3, 640) # set video width
+cam.set(4, 480) # set video height
+face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
+# For each person, enter one numeric face id
+face_id = input('\n----Enter User-id and press <return>----')
+print("\n Initializing face capture. Look the camera and wait!")
+# Initialize individual sampling face count
+count = 0
+while(True):
+ ret, img = cam.read()
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
+ faces = face_detector.detectMultiScale(gray, 1.3, 5)
+ for (x,y,w,h) in faces:
+ cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
+ count += 1 # increment
+ # Save the captured image into the datasets folder
+ cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w]) #req os
+ cv2.imshow('image', img)
+ k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video
+ if k == 27:
+ break
+ elif count >= 30: # Take 30 face sample and stop video capture
+ break
+# Do a bit of cleanup
+print("\n Exiting Program and cleaning up stuff")
+cam.release()
+cv2.destroyAllWindows()