summaryrefslogtreecommitdiff
path: root/face-detection
diff options
context:
space:
mode:
authorSaumit Dinesan <justsaumit@protonmail.com>2023-05-09 14:45:53 +0530
committerSaumit Dinesan <justsaumit@protonmail.com>2023-05-09 14:45:53 +0530
commitb5a95a1456043e9f14c10ea7dc192545bcf28027 (patch)
treeffdff8952b542033b860b22c79d1644ffc27bc4e /face-detection
parentca5ad2b5feed2043c832874eec3c820a975b266f (diff)
face_capture_dataset: Adding comments for detectMultiScale
Diffstat (limited to 'face-detection')
-rw-r--r--face-detection/01_face_capture_dataset.py8
1 files changed, 6 insertions, 2 deletions
diff --git a/face-detection/01_face_capture_dataset.py b/face-detection/01_face_capture_dataset.py
index d7ac82c..a56a274 100644
--- a/face-detection/01_face_capture_dataset.py
+++ b/face-detection/01_face_capture_dataset.py
@@ -25,7 +25,6 @@ cam.preview_configuration.align()
cam.configure("preview")
cam.start()
-# Initialize individual sampling face count
while True:
# Capture a frame from the camera
frame=cam.capture_array()
@@ -35,7 +34,12 @@ while True:
#Convert fram from BGR to grayscale
frameGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#Create a DS faces- array with 4 elements- x,y coordinates top-left corner), width and height
- faces = face_detector.detectMultiScale(frameGray, 1.3, 5) # 3 parameters- frame,scale-factor,
+ faces = face_detector.detectMultiScale(
+ frameGray, # The grayscale frame to detect
+ scaleFactor=1.1,# how much the image size is reduced at each image scale-10% reduction
+ minNeighbors=5, # how many neighbors each candidate rectangle should have to retain it
+ minSize=(30, 30)# Minimum possible object size. Objects smaller than this size are ignored.
+ )
for (x,y,w,h) in faces:
#create a bounding box across the detected face
cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 3) #tuple